您现在的位置是: > 娱乐八卦
实力诠释“一门三院士、桃李满天下”!师从“光催化之父”的三位院士
2024-12-24 11:26:37【娱乐八卦】4人已围观
简介藤岛昭,国际著名光化学科学家,光催化现象发现者,多次获得诺贝尔奖提名,因发现了二氧化钛单晶表面在紫外光照射下水的光分解现象,即“本多-藤岛效应”Honda-Fujishima Effect),开创了光
藤岛昭,实力士桃师从士国际著名光化学科学家,诠释光催化现象发现者,门院多次获得诺贝尔奖提名,李满因发现了二氧化钛单晶表面在紫外光照射下水的天下光分解现象,即“本多-藤岛效应”(Honda-Fujishima Effect),光催开创了光催化研究的位院新篇章,后被学术界誉为“光催化之父”。实力士桃师从士藤岛昭教授虽然是诠释日本人,但他与中国的门院关系十分密切,这种密切的李满关系体现在3 个方面:交流合作、培养人才、天下学习文化。光催国内光化学界更是位院流传着关于藤岛昭教授“一门三院士,桃李满天下”的实力士桃师从士佳话。其指导过的中国学生包括:北京大学刘忠范院士、北京航空航天大学江雷院士、中国科学院化学所姚建年院士。接下来,本文重点介绍“一门三院士“的主角-刘忠范院士、江雷院士、姚建年院士以及他们的近期研究进展。
一、刘忠范
北京大学博雅讲席教授,中国科学院院士,发展中国家科学院院士,中组部首批万人计划杰出人才,教育部首批长江学者特聘教授,首批国家杰出青年科学基金获得者。英国物理学会会士,英国皇家化学会会士,中国微米纳米技术学会会士。1983年毕业于长春工业大学,1984年留学日本,1990年获东京大学博士,1990–1993年东京大学和国立分子科学研究所博士后。1993年6月回北京大学任教,同年晋升教授。现任北京石墨烯研究院院长、北京大学纳米科学与技术研究中心主任。中国化学会副理事长、中国国际科技促进会副会长、中关村石墨烯产业联盟理事长、中关村科技园区丰台园科协第三届委员会主席、教育部科技委委员及学风建设委员会副主任和国际合作学部副主任。曾任北京大学现代物理化学研究中心主任(1995–2002),物理化学研究所所长(2006–2014),北京市科委挂职副主任(2016–2017),北京市低维碳材料工程中心主任(2013–2018),国家攀登计划(B)、973计划和纳米重大研究计划项目首席科学家,国家自然科学基金“表界面纳米工程学”创新研究群体学术带头人(三期)等。主要从事纳米碳材料、二维原子晶体材料和纳米化学研究,在石墨烯、碳纳米管的化学气相沉积生长方法及其应用领域做出了一系列开拓性和引领性工作,是国际上具有代表性的纳米碳材料研究团队之一。发表学术论文560余篇,申请中国发明专利100余项。获日中科技交流协会“有山兼孝纪念研究奖”(1992)、香港求是科技基金会杰出青年学者奖(1997)、中国分析测试协会科学技术奖一等奖(2005)、教育部高等学校科学技术奖自然科学一等奖(2007)、国家自然科学二等奖(2008, 2017)、中国化学会-阿克苏诺贝尔化学奖(2012)、宝钢优秀教师特等奖(2012)、日本化学会胶体与界面化学年会Lectureship Award(2016)、北京大学方正教师特别奖(2016)、“北京市优秀教师”(2017)、ACS Nano LectureshipAward(2018)等。现任“物理化学学报”主编、“科学通报”副主编,Adv. Mater.、ACS Nano、Small、Nano Res.、ChemNanoMat、APL Mater.、National Science Review等国际期刊编委或顾问编委。
近期代表性成果:
1、Angew:冷壁化学气相沉积方法用于石墨烯的超净生长
北京大学刘忠范院士,彭海琳教授和曼彻斯特大学李林教授展示了一种在CW-CVD系统中大面积生长超洁净石墨烯薄膜的简便方法,该方法制备的石墨烯薄膜具有改善的光学和电学性质。温度的独特分布将抑制生长过程中的气相反应,从而确保获得清洁度得到改善的石墨烯。干净的石墨烯薄膜是用于包括透明电极和外延层在内的应用的有前途的材料。这项研究为石墨烯的CVD生长中的气相反应工程学提供了新的见解,从而获得了高质量的石墨烯薄膜,并为大规模生产具有改进性能的石墨烯薄膜铺平了道路,为将来的应用铺平了道路。
文献链接:https://doi.org/10.1002/anie.202005406
2、ACS Nano:大规模合成具有多功能石墨烯石英纤维电极
北京大学刘忠范院士,刘开辉研究员等人结合石墨烯优异的电学性能和石英纤维的机械柔韧性,设计并通过强制流动化学气相沉积(CVD)制备了混杂石墨烯石英纤维(GQF)。高导电性、卓越的吸附能力和精细的结构使GQF成为一种很有前途的实时气体检测方法。此外,利用石墨烯的柔韧性和石英纤维的高强度等优点,可以将所制备的GQFs编织成具有可调片电阻的平方米级GQFF。这项工作不仅提供了一种多功能石墨烯纤维材料,而且为传统材料与前沿材料的结合提供了研究方向,将有助于石墨烯与石英纤维在不久的将来实现产业化和商业化。
文献链接:https://doi.org/10.1021/acsnano.0c01298
3、Nano Lett: 层状石墨烯用于定量分析锂离子电池介电层集电器的界面性能
北京大学刘忠范院士和彭海琳教授等人证实了基于石墨烯设计的Al集电器/电解质界面处增强的防腐性能,石墨烯表层使商用铝箔用作LIB中的正极集电器时具有与电解质和电极材料几乎理想的界面。此外,研究人员展示了在金属箔上分层石墨烯合成的批量生产方法,证明了其技术可扩展性。坦白地说,尽管其合成是在相对较低的温度下进行的,但目前其商业化的瓶颈在于合成效率低和成本高。该工作有望开拓石墨烯市场。
文献链接:https://doi.org/10.1021/acs.nanolett.0c00348
二、江雷
江雷,1965年3月生吉林长春,无机化学家、纳米材料专家,中国科学院院士 、发展中国家科学院院士、美国国家工程院外籍院士 ,中国科学院化学研究所研究员、博士生导师,北京航空航天大学化学与环境学院院长 。1987年江雷从吉林大学固体物理专业毕业后留在本校化学系物理化学专业就读硕士;1990年获得硕士学位后继续在校攻读博士学位;1992年作为中日联合培养的博士生公派去日本东京大学学习,师从国际光化学科学家藤岛昭;1994年获得吉林大学博士学位后继续在东京大学做博士后研究;1996年进入日本科技厅神奈川科学技术研究院工作;1998年获得日本文部省颁发的青年特别奖励基金,同年入选中国科学院百人计划;1999年进入中国科学院化学研究所工作;2001年获得国家杰出青年科学基金资助;2004年兼任国家纳米科学中心首席科学家;2008年兼任北京航空航天大学化学与环境学院院长;2009年当选中国科学院院士;2012年当选发展中国家科学院院士;2015年获第三届中国国际纳米科学技术会议奖;2016年当选为美国国家工程院外籍院士;2017年获得全国创新争先奖 。主要从事仿生功能界面材料的制备及物理化学性质的研究,揭示了自然界中具有特殊浸润性表面的结构与性能的关系,提出了“二元协同纳米界面材料”设计体系。在超双亲/超双疏功能材料的制备、表征和性质研究等方面,发明了模板法、相分离法、自组装法、电纺丝法等多种有实用价值的超疏水性界面材料的制备方法。制备出多种具有特殊功能的仿生超疏水界面材料。2017年获得德国洪堡研究奖(Humboldt Research Award);2016年分别获得日经亚洲奖(Nikkei Asia Prizes);联合国教科文组织纳米科技与纳米技术贡献奖(UNESCOMedal "For Contribution to the Development of Nanoscience andNanotechnologies"); 2015年获得ChinaNANO 奖(首位华人获奖者);2014年作为中国大陆首位获奖人获得美国材料学会奖励“MRS Mid-CareerResearcher Award ”;同年获得化学领域和材料领域汤森路透高被引科学家奖以及最具国际引文影响力奖; 2014年度中国科学院杰出科技成就奖;2013年获得何梁何利科学技术奖;2011年获得第三世界科学院化学奖;2005年以“具有特殊浸润性(超疏水/超亲水)的二元协同纳米界面材料的构筑”成果获国家自然科学二等奖。曾获北京市科学技术奖一等奖,中国化学会青年化学奖,中国青年科技奖等奖励。2007年被聘为“纳米研究”重大科学研究计划“仿生智能纳米复合材料”项目首席科学家。
近期代表性成果:
1、Angew:量身定制聚醚砜双极膜用于高功率密度的渗透能发生器
中科院理化技术研究所江雷院士,闻利平研究员和Xiang-Yu Kong从相同的PES前体合成了带负电荷的磺化聚醚砜(PES-SO3H)和带正电荷的咪唑型聚醚砜(PES-OHIM),并采用无溶剂诱导相分离(NIPS)和旋涂(SC)法制备了一系列双极膜。其中,PES-SO3H层充当功能层,PES-OHIm层充当支撑层。由于聚(芳基醚砜)的高分子量,该膜表现出良好的物理性能。研究人员研究了在50倍的盐度梯度下,双极膜的最大功率密度可达~6.2 W/m2,比Nafion 117高出13%。这项工作展示了设计双极膜的策略,并阐述了其在盐度梯度发电系统中的优越性。
文献链接:https://doi.org/10.1002/anie.202006320
2、Nature Commun:三维水凝胶界面膜来实现渗透能的高效转化
中科院理化所江雷院士和闻利平研究员等人通过将带电荷的聚电解质水凝胶涂覆到ANF膜上制备的新设计的异质膜中观察到了高性能的渗透能转换。由于固有的多级不对称性,混合膜表现出电荷控制的不对称离子传输行为,可以大大减少离子极化现象。而且,具有广阔带电荷3D网络的聚电解质凝胶可以充当离子扩散促进剂,从而大大提高界面传输效率。这样的膜设计大大促进了跨膜离子的扩散,有助于实现5.06 W m-2的高功率密度,这是基于纳米流体膜的渗透能转换的最高值。此外,聚电解质水凝胶膜功能的良好可调性可系统地理解可控离子扩散机理及其对整体膜性能的影响。这项工作突出了界面设计在基于纳米流体膜的渗透能转换系统的构建中的重要性,证明了聚电解质凝胶作为高性能界面材料在非均相渗透发电领域的巨大前景。
文献链接:https://www.nature.com/articles/s41467-020-14674-6
3、ACS Nano:用于单向液体渗透的具有超亲水性和亲水性的高柔韧性单层多孔膜
北京航空航天大学江雷院士和田东亮副教授等人通过相转移方法开发了一种在相对表面具有特殊微孔和纳米孔的超亲水-亲水单层多孔PES膜,该膜可用于在广泛的pH值范围内编程单向液体渗透和有效的反重力单向液体上升剂;即,水滴可以自发地从一个表面渗透到另一表面,但是由于扩散和渗透之间的竞争行为,如果使膜翻转,水滴将被阻塞。该膜具有出色的耐久性,超柔韧性,防腐性能和耐低温性能。通过控制的定向传输能力,如单向渗透,双向未渗透和双向渗透,也可以获得不同孔径的PES膜梯度。该研究为多孔材料和智能除湿材料的设计提供了一条新途径,在生物医学材料、先进功能纺织品、工程除湿材料等方面具有广阔的应用前景。
文献链接:https://pubs.acs.org/doi/10.1021/acsnano.0c02558
三、姚建年
姚建年,研究员,物理化学家,获日本东京大学工学部博士学位,现任中国科学院化学研究所研究员,中国化学会理事长,第十三届全国人大常委会委员,全国人大社会建设委员会副主任委员,农工党中央副主席,中国科协第九届全国委员会常务委员,英国皇家化学会和国际纳米制造学会的fellow,日本科学技术振兴机构(JST)中国综合研究中心顾问。2005年当选中国科学院院士。长期从事新型光功能材料的基础和应用探索研究,在低维材料、纳米光电子学等方面做出了开创性贡献。迄今Nature, Acc. Chem. Res., Chem. Soc. Rev., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater. 等国际化学和材料界等杂志上发表论文500余篇(他引15000余次),出版合著4部,合作译著1部,担任担任《CCS Chemistry》主编、《光电子科学与技术前沿丛书》主编、《中国大百科全书》第三版化学学科副主编、物理化学分支主编。1995年获中国驻日大使馆教育处优秀留学人员称号,同年获国家杰出青年科学基金资助;1997年首批入选"百、千、万人才工程"第一、二层次;2003年荣获教育部"全国优秀博士学位论文指导教师"称号,同年由他为学术带头人的"光功能材料的设计、制备与表征"获基金委创新研究群体资助;2004年以成果"若干新型光功能材料的基础研究和应用探索"获国家自然科学二等奖(第一获奖人);2013年获中国分析测试协会科学技术奖(CAIA)一等奖(第二获奖人);2014年以成果"低维光功能材料的控制合成与物化性能"获国家自然科学奖二等奖(第一获奖人);2015年获何梁何利基金科学与技术进步奖;2016年获中国科学院杰出成就奖。此外,还多次获中科院优秀导师奖。姚建年院士在有机功能纳米结构的制备及其性能研究,基于分子设计的有机纳米结构的形貌调控,液相胶体化学反应法对低维结构形成动力学过程的调控,有机纳米结构的特异光物理和光化学性能研究等多方面取得了卓越的成就。就像在有机功能纳米结构研究上,考虑到纳米结构在无机半导体领域所取得的非凡成就,作为一类重要的光电信息功能材料,有机分子结构的多样性,可设计性以及材料合成及制备方法上的灵活性都使得有机纳米结构的研究尤为重要。姚建年的主要研究工作是通过分子设计和分子间弱相互作用的控制,制备有机纳米/亚微米结构,研究这些纳米/亚微米结构的光物理和光化学性能,并在此基础之上开展一些应用基础研究。他先后发现了分子间电荷转移激子的限域效应、多种光物理和光化学性能的尺寸依赖性;发展了多种制备有机纳米结构的方法,并借此开发了多种低维有机纳米功能材料,包括多色发光、白光材料以及光波导和紫外激光器材料等。
近期代表性成果:
1、Angew: 调节单原子掺杂二氧化钛中晶格氧的电荷转移以HER
中科院化学研究所姚建年院士和北京交通大学王熙教授分别以TM1/TiO2和HER为模型催化剂和模型反应,系统地研究了催化作用下的电荷转移。O活性位点的活性不仅可以通过用其他TM原子代替最接近的原子(Ti)来调节,而且可以通过在其第二最接近的位点产生O空位来调节。两种方法均被证明在调节电荷向O的转移以及HER性能的变化中起关键作用。实验结果进一步证实了这种调节是可行的,从而可以建立电荷转移与催化之间的关系。该工作揭示了AR对电荷转移的影响,并为通过精确调节活性的方法从而设计出高效且环保的催化剂铺平了道路。
文献链接:https://doi.org/10.1002/anie.202004510
2、JACS: 多晶有机纳米晶中的光致发光各向异性
中科院化学研究所姚建年院士团队成功地从铂(II)-β-二酮酸酯络合物制备了两个多晶型纳米晶体PtD-g和PtD-y。这些材料具有出色的集光和EnT特性,这是通过掺杂低能红色发射铂的受体实现的。此外,在纯净和掺杂的PtD-y晶体中观察到了与EnT过程耦合的显着PL各向异性。对于纯PtD-y供体和掺杂的受主发射,最高的PL各向异性比分别达到0.87和0.82,表明供体的激发各向异性能可以有效地转移到受体上,并具有显著的放大作用。这项工作表明,堆积方式对晶体材料的激发态和PL各向异性具有重要影响,表明多晶型纳米结构在多功能纳米光子器件中的巨大应用潜力。
文献链接:https://pubs.acs.org.ccindex.cn/doi/10.1021/jacs.9b02055
本文由eric供稿。
本内容为作者独立观点,不代表材料人网立场。
未经允许不得转载,授权事宜请联系kefu@cailiaoren.com。
欢迎大家到材料人宣传科技成果并对文献进行深入解读,投稿邮箱: tougao@cailiaoren.com.
投稿以及内容合作可加编辑微信:cailiaorenVIP。
很赞哦!(6996)
上一篇: 十月毛乌素沙漠:沙海中的坚贞与希看
热门文章
站长推荐
友情链接
- 催化、储能若何做?看看范黑金、郭少军、殷亚东团队吧 – 质料牛
- 复旦小大教 Adv. Mater.:一种齐新“盐颗粒魔难魔难室”的分解见识:操做SLCA法制备种种两维(2D)单层有序介孔质料 – 质料牛
- 2019年锂电规模小大牛服赶紧递 – 质料牛
- 2019年那些使人线人一新的钻研功能 – 质料牛
- 武汉小大教闵杰Joule:有机太阳能电池逐层刮涂格式克制组件效力的滞后 – 质料牛
- 厦小大下锦豪团队Nano Lett.:级联的多吸应自组拆19F MRI纳米探针经由历程激活/扩删两个阶段对于妨碍肿瘤精确的检测战成像 – 质料牛
- 斯坦祸&北化工Nature Nanotechnology:氮异化纳米金刚石/Cu界里协同增强催化CO2复原复原为C2露氧化开物 – 质料牛
- 述讲聘用:质料合计操做与去世少研谈判坛 已经确定19位教授副教授返回做述讲 – 质料牛
- Nat. Co妹妹un.:氟化杂化固态电解量界里用于无枝晶锂群散 – 质料牛
- 看同步辐射若何“解稀”钙钛矿、锂电、电催化、OFET、OPV – 质料牛
- 中科院北京纳米所王中林团队Adv. Energy Mater.:长命命战低波峰比磨擦电纳米收机电 – 质料牛
- 西安交小大&宾州州坐最新Nature: 具备超下压电功能的透明铁电晶体 – 质料牛
- Nano energy:一种露微凸面阵列的超下锐敏度战晃动性的柔性电容式压力传感器,可用于行动战瘦弱监测 – 质料牛
- Advanced Materials:交流电光伏效应诞去世躲世 – 质料牛
- Nano Energy: 基于磁性微针阵列的柔性磨擦
- 从魔难魔难室到市场: 石朱烯的商业化进阶之路 – 质料牛
- Prog. Poly. Sci.综述:去世物基下份子质料:散漫化教分解与质料减工 – 质料牛
- 北小大侯俯龙团队Energy Environ. Sci.:自反对于SnO2@CF电极助力下功能钾离子电池 – 质料牛
- 北京化工小大教闫寿科课题组Macromolecules:下温松张战重结晶导致定背散乙烯份子超薄膜中不开倾向称叶状晶体的组成 – 质料牛
- Energy & Environmental Science: 下功能锌金属背极—离子迁移能源教及界里晃动性的克制 – 质料牛
- 启里小大赏—
- 华衰顿小大教张米琴团队Adv. Mater.:石朱烯量子面及其正在去世物成像、去世物传感战治疗中的操做 – 质料牛
- 最新Nature: 基于液滴的下效收电器件 – 质料牛
- 德克萨斯小大教奥斯汀分校Angew.:经由历程增壮概况相互熏染感动,减速Li+正在氧化物/散开物复开电解量中的传导 – 质料牛
- 浙江小大教今日Science:正在甲烷氧化制甲醇历程中原位组成过氧化物的疏水沸石改性 – 质料牛
- 湖小大谭蔚泓院士团队JACS: 操做去世物正交化教战前药设念修筑新型癌症化教能源治疗新策略 – 质料牛
- 天小大&北开 Adv. Mater.报道:公平设念尖晶石Co2VO4,真现劣秀的ORR电催化功能 – 质料牛
- 快看!那些皆可能用做可脱着超级电容器的电极质料! – 质料牛
- 【顶刊细读】重压之下必有“怯妇” – 质料牛
- 北京化工小大教Nat. Co妹妹un.:下功能苦油氢解的铂
- 初次声誉测试!齐球碳电极钙钛矿电池最小大尺寸最下效力 – 质料牛
- 中科院&北科&喷香香港理工Adv. Mater.:用于柔性锂离子电池的V2O5织物正极具备下容量战晃动性 – 质料牛
- 汤谷仄传授课题组Nano Lett.:细菌中膜囊泡纳米药物用于肿瘤免疫治疗及肿瘤转移提防 – 质料牛
- 华东理工小大教马骧课题组Angew. Chem. Int. Ed.:基于葫芦[8]脲的超份子组拆足腕真现可睹光激发的水相室温磷光 – 质料牛
- 澳小大利亚迪肯小大教 Adv. Mater. 综述:操做固体有机电解量真现下能量稀度的锂金属电池:机缘与挑战 – 质料牛
- Angew. Chem. Int. Ed.:用于广谱抗菌战抗耐药菌的超份子单波少光疗剂 – 质料牛
- 质料天下果“缺陷”而万紫千黑 – 质料牛
- 北京小大教最新Nature: 量子辅助睁开用于下量量石朱烯的制备 – 质料牛
- ACS Nano:操做于锂离子电池的碳包覆硅/硅化铁两次粒子的连绝流分解 – 质料牛
- 风背标去了:2019年OER催化剂热面钻研仄息 – 质料牛
- 西北交通小大教杨维浑课题组 Adv. Funct. Mater:多维感知–MXene基柔性多功能微力传感器 – 质料牛
- 北京小大教王教斌团队ACS Nano:纤维素基三维导电碳汇散用于下功能电化教储能 – 质料牛
- Applied Materials Today:多功能涂层:散疏冰性、快捷自愈开、下透明度战可支受收受性于一身 – 质料牛
- 您需供的光催化必备知识—光去世逍遥基及钻研、阐收格式 – 质料牛
- 新年新天气,MOF给您贺年了!|Nature等顶刊钻研速览 – 质料牛
- 最新肺炎疫情的声誉解读去了!医教顶刊《NEJM》战《LANCET》纷纭宣告声誉阐收! – 质料牛
- Angew. Chem. Int. Ed:您出看错!累氧无光也出法停止ROS延绝产去世妨碍肿瘤治疗 – 质料牛
- Nano Energy:铝离子扩层V2O5⋅nH2O用于下功能水系锌离子电池 – 质料牛
- Nano Energy: MXene基微型芯片超级电容器:一种低老本、可扩大的处置
- 2019最佳纳米质料TOP10 – 质料牛
- TiAl开金的去世少历程及操做远景 – 质料牛
- 北京纳米能源与系统钻研所孙其君钻研员Nano Energy:基于自驱动光通讯的通用型任意触觉交互系统 – 质料牛
- 电子科技小大教刘明侦教授团队Nano Energy:经由历程抑制Spiro
- 皇家朱我本理工小大教马前团队Nat. Co妹妹un.:下强度超声克制金属3D挨印历程中的晶粒挨算 – 质料牛
- 2019 Nature/Science十小大下引质料类论文,回念年度钻研热面 – 质料牛
- 年闭祸利:咱们给那十位专栏科技照料收黑包啦! – 质料牛
- 中国陆天小大教Advanced Functional Materials:为K+构建小大空间去真现快捷的储钾功能 – 质料牛
- Adv. Mater.:多酚金属散漫纳米药物用于化疗与化教能源教疗法协同抗肿瘤 – 质料牛
- 2020年国家做作科教基金重面名目、里上名目反对于的质料&化教规模 – 质料牛
- 3院士坐镇,一年2篇Science,那所百年下校质料有多强? – 质料牛